Engineered Pump Catalog
60 Hz Performance Curves
Index

Vertical Turbine Pumps (VTP) 7
Applications ... 10
Main Components & Materials 10
Range Chart - 60 Hz - 1 Stage 11
Available Models 11
Diagram ... 12
Main Dimensions 13
Main Dimensions (cont.) 14
Multiple discharge configurations and sizes 14

Vertical Submersible Pumps (VS) 87
Available Models 89
Applications 90
Main Components & Materials 90
Diagram ... 91
Main Dimensions 92
Range Chart - 60 Hz - 1 Stage 92

Multistage Pumps (HR) 111
Applications 114
Main Components & Materials 114
Available Models 115
Range Chart - 60 Hz - 1 Stage 115
Diagram ... 116
Main Dimensions 116

Axial Split Case Pumps (HA) 125
Applications 128
Main Components & Materials 128
Available Models 129
Range Chart - 60 Hz 129
Diagram ... 130
Main Dimensions 130

Volute Pumps (HV) 147
Applications 150
Main Components & Materials 150
Available Models 151
Range Chart - 60 Hz 151
Diagram ... 152
Main Dimensions 152

AS SIMPLE AS 1-2-3

Find the right Vertical Turbine Pump (VTP) for your application using the Neptuno Pumps® VTPSelector™.

Simply select your system design point, fluid characteristics and NPSH ratings and the VTPSelector™ will create a dynamic pump curve. From there you can adjust operating speeds, view/save electronic curves and data sheet reports in a PDF format, generate system curves, simulate multiple pumps/speeds, request quotes and much more.

www.vtpselector.com
ABOUT US
NEPTUNO PUMPS® is a world-class manufacturer of centrifugal pumps for industrial and heavy-duty applications, delivering a comprehensive line of innovative products and engineered pumping solutions to satisfy and exceed your most demanding needs with the highest quality and lowest lead-times in the market.

TECHNOLOGY
NEPTUNO PUMPS® counts with a highly skilled team of engineers and well-trained personnel; state-of-the-art computer assisted design softwares and advanced manufacturing technologies complemented with rigorous quality control systems that guarantee high quality products and services with its emphasis on total customer satisfaction.

RESEARCH & DEVELOPMENT
NEPTUNO PUMPS® is continually working with business partners and most prestigious universities and institutions in the areas of mechanical, hydraulic, aerospace engineering and material science. Our active in-house R&D Department is permanently doing research for new designs and developing new technologies always focusing on maximizing efficiency and delivering innovative pumping solutions, to keep your business going strong.

QUALITY, ENVIRONMENT, SAFETY & HEALTH PROGRAM
The principals of Quality Management System (QMS) are the foundation of our business. That is why all our Design and Manufacturing Processes are certified under:

- ISO 9001: 2008
- ISO 9906: 1999
- ISO 14001: 2004
- OHSAS 18001: 2007

And conforms or meets most recognized specifications, including:

- ANSI/HI
- ANSI/AWWA E101

TESTING
ISO 9906 certified state-of-the-art Testing Facility, in accordance with Hydraulic Institute Standards and ISO 13709/API 610.

APPLICATIONS
- Primary Water Supply – Fresh water or Sea water
- Solvent Extraction/Electro-Winning (SX/EW): Raffinate, Pregenate Leach Solution (PLS), Heap Leach, Dump Leach, Acid Water Pressure Boosting and Transfer
- Dewatering – Sump, Deep Well, Ponds
- Tailings – Post Processed Solutions
- Seepage Water – Sump or Can/Booster
- Oil & Gas Production – Onshore, Offshore and Pipeline
- Marine
- Pulp and Paper
- Municipal Water & Wastewater
- Agriculture - Irrigation
Vertical Turbine Pumps (VTP)
Vertical Turbine Pumps (VTP)

Versatility is one of the main characteristics of NEPTUNO PUMPS® VTP: flanged bowl construction, single or multiple stage design, depending on your total head requirements, for continuous service. Heavy duty design for long term operation in industrial applications.

VERTICAL PUMPS MODELS
- VERTICAL Turbine Pumps (VTP)
- VERTICAL CAN TYPE (VC)

OPERATING PARAMETERS
- Capacities up to 40,000 gpm (7,500 m³/h)
- Head up to 1,200 Feet (400 m)
- Power through 2000 hp (1500 kW)
- Pressures up to 590 psi (4,067 kPa)
- Frequency 50/60 Hz
- Temperatures to 400 °F (200°C)
- Bowls sizes from 8" to 40"

DESIGN FEATURES
- NEPTUNO PUMPS® high-efficiency design
- High-quality investment cast impellers and bowls
- Maximum versatility and reliability
- Low NPSH first stage construction
- No priming required
- Thrust balanced impellers available
- Product lube or enclosed lineshaft
- Minimum space requirement
- Special material selection for standard or abrasive/corrosive service
- Packing or mechanical seal
- Independent axial-thrust bearing assembly
- Multiple discharge configurations and sizes

SERVICES
- Primary Water Supply – Fresh water or Sea water
- Solvent Extraction/Electro-Winning (SX/EW): Raffinate, Pregnate Leach Solution (PLS), Heap Leach, Acid Water Pressure Boosting and Transfer
- Dewatering – Sump, Deep Well, Ponds
- Tailings – Post Processed Solutions
- Seepage Water – Sump or Can/Booster
- Oil & Gas Production – Onshore, Offshore and Pipeline
- Marine
- Pulp and Paper
- Municipal Water & Wastewater
- Agriculture - Irrigation
Vertical Turbine Pumps (VTP)

Applications

<table>
<thead>
<tr>
<th>Duty</th>
<th>Heavy</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Head</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Fluid</td>
<td>Clean</td>
<td>Process</td>
<td>Slurry</td>
</tr>
<tr>
<td>Flexibility</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

Vertical Turbine Pumps (VTP)

Main Components & Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Cast Iron</th>
<th>Carbon Steel</th>
<th>Brass</th>
<th>Stainless Steel</th>
<th>Duplex</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction Bell</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Bowl</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Impeller</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Wear Rings</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Shaft</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Discharge Head</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Stuffing Box / Mechanical Seal</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vertical Turbine Pumps (VTP)
Available Models

<table>
<thead>
<tr>
<th>VTP 30</th>
<th>VTP 50</th>
<th>VTP 60M</th>
<th>VTP 80C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP 100</td>
<td>VTP 110</td>
<td>VTP 130</td>
<td>VTP 135X</td>
</tr>
<tr>
<td>VTP 170</td>
<td>VTP 170M</td>
<td>VTP 180</td>
<td>VTP 180M</td>
</tr>
<tr>
<td>VTP 250</td>
<td>VTP 290</td>
<td>VTP 300</td>
<td>VTP 300MH</td>
</tr>
<tr>
<td>VTP 325</td>
<td>VTP 325X</td>
<td>VTP 360</td>
<td>VTP 400M</td>
</tr>
<tr>
<td>VTP 450</td>
<td>VTP 500</td>
<td>VTP 500M</td>
<td>VTP 500X</td>
</tr>
<tr>
<td>VTP 650</td>
<td>VTP 700</td>
<td>VTP 750</td>
<td>VTP 750M</td>
</tr>
<tr>
<td>VTP 800</td>
<td>VTP 850</td>
<td>VTP 850M</td>
<td>VTP 850X</td>
</tr>
<tr>
<td>VTP 850XB</td>
<td>VTP 1000</td>
<td>VTP 1000X</td>
<td>VTP 1250</td>
</tr>
<tr>
<td>VTP 1300</td>
<td>VTP 1350</td>
<td>VTP 1500</td>
<td>VTP 1500L</td>
</tr>
<tr>
<td>VTP 1500LH</td>
<td>VTP 1500KM</td>
<td>VTP 1800M</td>
<td>VTP 1800X</td>
</tr>
<tr>
<td>VTP 2200</td>
<td>VTP 2200M</td>
<td>VTP 3000</td>
<td>VTP 3400</td>
</tr>
<tr>
<td>VTP 3400M</td>
<td>VTP 6500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vertical Turbine Pumps (VTP)

Diagram
Vertical Turbine Pumps (VTP)

Main Dimensions

<table>
<thead>
<tr>
<th>Pump's Principal Dimensions</th>
<th>Bowl Assembly Dimensions</th>
<th>Discharge Head Principal Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Model</td>
<td>Column</td>
<td>Diameters [in]</td>
</tr>
<tr>
<td></td>
<td>FD [in]</td>
<td>BD [in]</td>
</tr>
<tr>
<td></td>
<td>OP [in]</td>
<td>S [in]</td>
</tr>
<tr>
<td></td>
<td>C [in]</td>
<td>H [in]</td>
</tr>
<tr>
<td></td>
<td>BW [in]</td>
<td>L [in]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lbowl [in]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lbell [in]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ls-trainer [in]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G [in]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BF [in]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A [in]</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>7.8</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>7.1</td>
</tr>
<tr>
<td>60M</td>
<td>4</td>
<td>7.1</td>
</tr>
<tr>
<td>80C</td>
<td>4</td>
<td>9.6</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>9.5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
<td>9.3</td>
</tr>
<tr>
<td>130</td>
<td>6</td>
<td>9.4</td>
</tr>
<tr>
<td>135X</td>
<td>6</td>
<td>9.4</td>
</tr>
<tr>
<td>170</td>
<td>6</td>
<td>9.5</td>
</tr>
<tr>
<td>170M</td>
<td>6</td>
<td>9.5</td>
</tr>
<tr>
<td>180</td>
<td>8</td>
<td>9.5</td>
</tr>
<tr>
<td>180M</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>250</td>
<td>8</td>
<td>9.4</td>
</tr>
<tr>
<td>290</td>
<td>8</td>
<td>9.2</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
<td>13.8</td>
</tr>
<tr>
<td>300MH</td>
<td>10</td>
<td>16.8</td>
</tr>
<tr>
<td>325</td>
<td>6</td>
<td>17.7</td>
</tr>
<tr>
<td>325X</td>
<td>6</td>
<td>17.5</td>
</tr>
<tr>
<td>360</td>
<td>8</td>
<td>9.5</td>
</tr>
<tr>
<td>400</td>
<td>8</td>
<td>13.8</td>
</tr>
<tr>
<td>450</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>13.8</td>
</tr>
<tr>
<td>500M</td>
<td>10</td>
<td>21.7</td>
</tr>
<tr>
<td>500X</td>
<td>10</td>
<td>20.5</td>
</tr>
<tr>
<td>650</td>
<td>12</td>
<td>20.4</td>
</tr>
<tr>
<td>700</td>
<td>12</td>
<td>24.2</td>
</tr>
<tr>
<td>750</td>
<td>14</td>
<td>19.9</td>
</tr>
<tr>
<td>750M</td>
<td>14</td>
<td>24.2</td>
</tr>
<tr>
<td>800</td>
<td>12</td>
<td>19.7</td>
</tr>
<tr>
<td>800M</td>
<td>14</td>
<td>18.5</td>
</tr>
<tr>
<td>850</td>
<td>14</td>
<td>17.5</td>
</tr>
<tr>
<td>850M</td>
<td>14</td>
<td>18.5</td>
</tr>
<tr>
<td>850X</td>
<td>14</td>
<td>18.5</td>
</tr>
<tr>
<td>850XG</td>
<td>16</td>
<td>24.2</td>
</tr>
<tr>
<td>1000</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>1000X</td>
<td>14</td>
<td>28.7</td>
</tr>
</tbody>
</table>

Notes:
- All dimensions are in inches.
- Values underlined indicate standard models, while values in parentheses indicate optional models.
- The discharge head is calculated based on the first stage and each additional stage.
- The column diameters are listed for the bowl assembly dimensions.
Vertical Turbine Pumps (VTP)

Main Dimensions (cont.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>12</td>
<td>19</td>
<td>22.4</td>
<td>25.8</td>
<td>38.1</td>
<td>28</td>
<td>5.7</td>
<td>14.3</td>
<td>31</td>
<td>18</td>
<td>13</td>
<td>22.3</td>
<td>13.4</td>
<td>38.3</td>
<td>57.1</td>
</tr>
<tr>
<td>1300</td>
<td>16</td>
<td>17</td>
<td>25</td>
<td>28.8</td>
<td>41.7</td>
<td>14.2</td>
<td>5.1</td>
<td>12.8</td>
<td>28.7</td>
<td>15.6</td>
<td>13.1</td>
<td>9.1</td>
<td>16.5</td>
<td>48</td>
<td>63</td>
</tr>
<tr>
<td>1350</td>
<td>14</td>
<td>25.5</td>
<td>25.5</td>
<td>29.3</td>
<td>42.0</td>
<td>19.6</td>
<td>7.6</td>
<td>19.1</td>
<td>29.8</td>
<td>19.0</td>
<td>10.8</td>
<td>12.0</td>
<td>14.0</td>
<td>47.2</td>
<td>51.2</td>
</tr>
<tr>
<td>1500</td>
<td>16</td>
<td>20.2</td>
<td>25</td>
<td>28.8</td>
<td>41.2</td>
<td>16.4</td>
<td>6.1</td>
<td>15.1</td>
<td>27.3</td>
<td>17.9</td>
<td>9.4</td>
<td>10.3</td>
<td>16.5</td>
<td>48</td>
<td>70.9</td>
</tr>
<tr>
<td>1500KM</td>
<td>14</td>
<td>25.5</td>
<td>22.4</td>
<td>29.3</td>
<td>38.1</td>
<td>19.6</td>
<td>7.6</td>
<td>19.1</td>
<td>28.9</td>
<td>19.0</td>
<td>9.9</td>
<td>12.0</td>
<td>13.9</td>
<td>44.0</td>
<td>67.3</td>
</tr>
<tr>
<td>1500L</td>
<td>16</td>
<td>21.1</td>
<td>21.1</td>
<td>24.2</td>
<td>40.5</td>
<td>16.6</td>
<td>6.3</td>
<td>15.8</td>
<td>24.2</td>
<td>14.6</td>
<td>9.5</td>
<td>10.3</td>
<td>16.5</td>
<td>48</td>
<td>68.9</td>
</tr>
<tr>
<td>1500LH</td>
<td>16</td>
<td>21.1</td>
<td>21.1</td>
<td>24.2</td>
<td>40.5</td>
<td>16.6</td>
<td>6.3</td>
<td>15.8</td>
<td>24.2</td>
<td>14.6</td>
<td>9.5</td>
<td>10.3</td>
<td>16.5</td>
<td>48</td>
<td>68.9</td>
</tr>
<tr>
<td>1800M</td>
<td>16</td>
<td>22.8</td>
<td>22.8</td>
<td>27.6</td>
<td>43.3</td>
<td>14.7</td>
<td>6.9</td>
<td>17.1</td>
<td>28.0</td>
<td>16.1</td>
<td>11.8</td>
<td>7.9</td>
<td>16.5</td>
<td>51.2</td>
<td>68.9</td>
</tr>
<tr>
<td>1800X</td>
<td>16</td>
<td>22.4</td>
<td>25.2</td>
<td>29.0</td>
<td>45.0</td>
<td>22.5</td>
<td>6.7</td>
<td>16.9</td>
<td>27.0</td>
<td>16.7</td>
<td>10.3</td>
<td>15.7</td>
<td>16.5</td>
<td>51.2</td>
<td>68.9</td>
</tr>
<tr>
<td>2200</td>
<td>20</td>
<td>33.1</td>
<td>32.4</td>
<td>37.2</td>
<td>44.1</td>
<td>24.9</td>
<td>9.9</td>
<td>24.8</td>
<td>38.4</td>
<td>24</td>
<td>14.4</td>
<td>15</td>
<td>20.9</td>
<td>60</td>
<td>72.8</td>
</tr>
<tr>
<td>2200M</td>
<td>20</td>
<td>33.1</td>
<td>32.4</td>
<td>37.2</td>
<td>44.1</td>
<td>24.7</td>
<td>9.9</td>
<td>24.8</td>
<td>39</td>
<td>24.4</td>
<td>14.6</td>
<td>14.8</td>
<td>20.9</td>
<td>60</td>
<td>72.8</td>
</tr>
<tr>
<td>3000</td>
<td>20</td>
<td>36</td>
<td>37.1</td>
<td>42.7</td>
<td>49.9</td>
<td>23.4</td>
<td>10.8</td>
<td>27</td>
<td>48.9</td>
<td>28.9</td>
<td>20</td>
<td>12.6</td>
<td>25.2</td>
<td>72</td>
<td>78.7</td>
</tr>
<tr>
<td>3400</td>
<td>22</td>
<td>36.2</td>
<td>34.6</td>
<td>39.8</td>
<td>52.6</td>
<td>29.4</td>
<td>10.9</td>
<td>27.2</td>
<td>44.8</td>
<td>28.5</td>
<td>16.3</td>
<td>18.5</td>
<td>25.2</td>
<td>72</td>
<td>78.7</td>
</tr>
<tr>
<td>3400M</td>
<td>24</td>
<td>36.2</td>
<td>37.6</td>
<td>43.2</td>
<td>52.6</td>
<td>26.4</td>
<td>10.9</td>
<td>27.2</td>
<td>43.8</td>
<td>28.5</td>
<td>15.3</td>
<td>15.6</td>
<td>25.2</td>
<td>72</td>
<td>78.7</td>
</tr>
<tr>
<td>6500</td>
<td>26</td>
<td>39</td>
<td>43.3</td>
<td>49.8</td>
<td>65.5</td>
<td>33.6</td>
<td>11.7</td>
<td>29.2</td>
<td>48.2</td>
<td>28.8</td>
<td>19.4</td>
<td>21.9</td>
<td>27.6</td>
<td>78</td>
<td>98.4</td>
</tr>
</tbody>
</table>

Discharge Configurations

Multiple discharge configurations and sizes

![Discharge Configurations](image-url)
Vertical Turbine Pumps (VTP)
3600 rpm

VTP 30
Curve #: 11063-140207-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
3600 rpm

VTP 60M
Curve #: 11086-151123-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O T=18\,^\circ C$, H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)

3600 rpm

VTP 130

Curve #: 11004-081121-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VTP 135X
Vertical Turbine Pumps (VTP)
3600 rpm

Pump Performance Curves 60 Hz

Notes:

Vertical Turbine Pumps (VTP)

Pump Performance Curves 60 Hz

VTP 135X
Curve #: 11076-141114-S1

Vertical Turbine Pumps (VTP)
Vertical Turbine Pumps (VTP)
3600 rpm

VTP 170
Curve #: 11005-080704-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O $T=18$ [$^\circ$C], H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VTP 170M
Curve #: 11006-090721-S1

Vertical Turbine Pumps (VTP)
3600 rpm
Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O \ T°=18 [°C], H_2O \ Density = 998 [kg/m^3]$)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 180M

Vertical Turbine Pumps (VTP)

1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water \((H_2O \ T^\circ = 18 \ [\degree C], \ H_2O \ Density = 998 \ [kg/m^3]) \)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H2O T°=18 [°C], H2O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C; H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 325
Curve #: 11012-100701-E1

<table>
<thead>
<tr>
<th>Q [gpm]</th>
<th>H [m]</th>
<th>NPSHr [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>600</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>900</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>1200</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>1500</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>1800</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>2100</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>2400</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>2700</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>3000</td>
<td>20</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q [m³/h]</th>
<th>H [ft]</th>
<th>NPSHr [ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>600</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>900</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>1200</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>1500</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>1800</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>2100</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>2400</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>2700</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>3000</td>
<td>20</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P [hp]</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>30</td>
<td>64</td>
</tr>
</tbody>
</table>

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O 7°F=18°C, H₂O Density = 988 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 325X
Curve #: 11070-140513-F1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Vertical Turbine Pumps (VTP)
1200 rpm
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 360
Vertical Turbine Pumps (VTP)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Pump Performance Curves 60 Hz
Vertical Turbine Pumps (VTP)
1200 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($\text{H}_2\text{O} T^°=18°C, \text{H}_2\text{O} \text{Density} = 998 \text{[kg/m}^3\text{])}
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O $T=18$ [°C], H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water \((H_2O \ T^\circ=18 \ [^\circ C], \ H_2O \ Density = 998 \ [kg/m^3]) \)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VTP 500M
Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
Vertical Turbine Pumps (VTP)
1200 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 500X
Curve #: 11016-121116-E1

Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

Pump Performance Curves 60 Hz

VTP 650
Curve #: 11017-070713-E1

Notes:

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2

Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])

Power and efficiency losses are not reflected on the curve

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 700
Curve #: 11018-070713-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60%-80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Notes:

Pump Performance Curves 60 Hz

VTP 750
Curve #: 11019-090112-S1

Vertical Turbine Pumps (VTP)
1800 rpm
Vertical Turbine Pumps (VTP)
1200 rpm

VTP 750M
Curve #: 11020-081103-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 750M
Curve #: 11020-081103-S1

Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance
 acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated
 water (H_2O $T°=18°[°C]$, H_2O Density $=998[kg/m^3]$)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Vertical Turbine Pumps (VTP)
1800 rpm

VTP 800
Curve #: 11043-120227-S1

Notes:

- Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
- Performance based on single stage pumping clean non-aerated water (H_2O $T°=18°[°C]$, H_2O Density $=998[kg/m^3]$)
- Power and efficiency losses are not reflected on the curve
- Elevated temperature effects on performance are not included
- Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
- Consider 2.0% efficiency derate if using balanced impellers
- Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 850M
Curve #: 11071-140616-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O \ T°=18 [°C], H_2O \ Density = 998 [kg/m^3]$)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 850X
Curve #: 11022-101104-E1

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 850X
Curve #: 11022-101104-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O \ T°=18 \ [°C], \ H_2O \ Density = 998 \ [kg/m^3]$)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 850XB
Curve #: 11047-130213-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

[Graphs of pump performance curves including Q [gpm], H [ft], P [hp], NPSHr [ft] vs. Q [m³/h], η [%] vs. Q [m³/h]]
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water \((H_2O T^\circ=18 [^\circ C], H_2O Density = 998 [kg/m^3])\)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VTP 1000
Curve #: 11024-080704-S1
Vertical Turbine Pumps (VTP)
1800 rpm
Vertical Turbine Pumps (VTP)
1200 rpm

Pump Performance Curves 60 Hz

VTP 1000X
Curve #: 11053-131114-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 1000X
Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 1250
Curve #: 11025-080520-S1

Vertical Turbine Pumps (VTP)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O °T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Notes:

VTP 1300
Curve #: 11026-081111-S1

Horizontal Turbine Pumps (VTP)
1200 rpm

Pump Performance Curves 60 Hz
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 1300
Curve #: 11026-081111-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VTP 1350
Curve #: 11087-160202-F1
Vertical Turbine Pumps (VTP)
1200 rpm
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18° C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1800 rpm

VTP 1500
Curve #: 11027-081205-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O °T=18 [°C], H_2O Density = 998 [kg/m^3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)

1800 rpm

VTP 1500KM

Curve #: 11089-160405-F1

Notes:

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)

1800 rpm

VTP 1500LH
Curve #: 11029-080830-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18[°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T° = 18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VTP 1800M
Vertical Turbine Pumps (VTP)
1800 rpm
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water \((H_2O T=18 \, ^{\circ}C, \, H_2O \text{Density} = 998 \, \text{kg/m}^3)\)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2

Performance based on single stage pumping clean non-aerated water \((H_2O) \text{Temp}=18 \text{[°C]}, H_2O \text{Density}=998 \text{[kg/m}^3])

Power and efficiency losses are not reflected on the curve

Elevated temperature effects on performance are not included

Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)

Consider 2.0% efficiency derate if using balanced impellers

Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
900 rpm

Curve #: 11030-080728-S1

Notes:

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 2200
Vertical Turbine Pumps (VTP)
1200 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
900 rpm

VTP 2200M
Curve #: 11032-080723-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O \, 18^\circ C$, H_2O Density $= 998 \, [kg/m^3]$)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1200 rpm

VTP 3000
Curve #: 11033-080813-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O \, T°=18 \,[°C], \, H_2O \, Density = 998 \,[kg/m^3]$)
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H2O T=18 [°C], H2O Density = 998 [kg/m^3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEF (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
1200 rpm

VTP 3400
Curve #: 11034-080723-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T = 18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
900 rpm

VTP 3400M
Curve #: 11035-080702-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O $^T=18$ [°C], H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 3400M

Vertical Turbine Pumps (VTP)
1200 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP)
600 rpm

VTP 6500
Curve #: 11036-090310-S2

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VTP 6500
Curve #: 11036-090310-S2

Vertical Turbine Pumps (VTP)
720 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O °T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Turbine Pumps (VTP) 900 rpm

VTP 6500

Curve #: 11036-090310-S2

Notes:

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Diagrams:

- **Q [gpm]** vs. **H [m]**
- **P [kW]** vs. **Q [m³/h]**
- **NPSHr [m]** vs. **Q [m³/h]**

Specified Dimensions:

- 870 mm
- 830 mm
- 780 mm

Performance Indicators:

- **η 78**
- **η 83**
- **η 86**
- **η 88**

Units:

- **Q [gpm]**
- **H [ft]**
- **P [hp]**
- **NPSHr [ft]**

Pump Performance Curves 60 Hz

NEPTUNO PUMPS® innovation that flows.
Vertical Submersible Pumps (VS)
Vertical Submersible Pumps (VS)

Equipment is completely submersed, ideal for deep well applications where lineshaft pumps can not be used. Flanged bowl construction, single or multiple stage design, depending on your total head requirements, for continuous service. Heavy duty design for long term operation in industrial applications.

OPERATION PARAMETERS
- Capacities up to 6,000 gpm (1,150 m³/h)
- Head up to 2,130 Feet (650 m)
- Power through 1000 hp (750 kW)
- Pressures up to 960 psi (6,620 kPa)
- Frequency 50/60 Hz
- Bowls sizes from 8" to 20"

DESIGN FEATURES
- NEPTUNO PUMPS® high-efficiency design
- Ideal for deep-well applications
- High-quality investment cast impellers and bowls
- Thrust balanced impellers available
- Maximum versatility and reliability
- Minimum space requirement
- Discharge casing with incorporated non-return valve
- Special material selection for standard or abrasive/corrosive service

SERVICES
- Primary Water Supply – Fresh water or Seawater
- Dewatering – Sump, Deep Well, Ponds
- Oil & Gas Production – Onshore, Offshore and Pipeline
- Agriculture – Irrigation

Vertical Submersible Pumps (VS)

Available Models

<table>
<thead>
<tr>
<th>VS 50</th>
<th>VS 100</th>
<th>VS 110</th>
<th>VS 130</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS 170</td>
<td>VS 170M</td>
<td>VS 180</td>
<td>VS 180M</td>
</tr>
<tr>
<td>VS 250</td>
<td>VS 290</td>
<td>VS 300</td>
<td>VS 325</td>
</tr>
<tr>
<td>VS 360</td>
<td>VS 450</td>
<td>VS 500</td>
<td>VS 650</td>
</tr>
<tr>
<td>VS 850</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vertical Submersible Pumps (VS)

Applications

<table>
<thead>
<tr>
<th>Duty</th>
<th>Heavy</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid</td>
<td>Clean</td>
<td>Process</td>
<td>Slurry</td>
</tr>
<tr>
<td>Flexibility</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Submersible Pumps (VS)

Main Components & Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Cast Iron</th>
<th>Carbon Steel</th>
<th>Brass</th>
<th>Stainless Steel</th>
<th>Duplex</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowl</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Wear Rings</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Shaft</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Check Valve</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Vertical Submersible Pumps (VS)
Diagram
Vertical Submersible Pumps (VS)
Main Dimensions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4</td>
<td>9.4</td>
<td>11</td>
<td>8.6</td>
<td>21.7</td>
<td>7.4</td>
<td>14.3</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>10.0</td>
<td>12</td>
<td>11.7</td>
<td>13.3</td>
<td>8.4</td>
<td>4.9</td>
</tr>
<tr>
<td>110</td>
<td>4</td>
<td>9.8</td>
<td>12</td>
<td>9.5</td>
<td>17.3</td>
<td>6.5</td>
<td>10.8</td>
</tr>
<tr>
<td>130</td>
<td>4</td>
<td>8.3</td>
<td>10</td>
<td>7.6</td>
<td>17.3</td>
<td>6.5</td>
<td>10.8</td>
</tr>
<tr>
<td>170</td>
<td>6</td>
<td>10.0</td>
<td>12</td>
<td>11.7</td>
<td>13.3</td>
<td>8.4</td>
<td>4.9</td>
</tr>
<tr>
<td>170M</td>
<td>6</td>
<td>10.0</td>
<td>12</td>
<td>11.7</td>
<td>13.3</td>
<td>8.4</td>
<td>4.9</td>
</tr>
<tr>
<td>180</td>
<td>8</td>
<td>12.2</td>
<td>14</td>
<td>11.6</td>
<td>28.7</td>
<td>9.2</td>
<td>19.6</td>
</tr>
<tr>
<td>180M</td>
<td>6</td>
<td>14.8</td>
<td>17</td>
<td>12.4</td>
<td>27.7</td>
<td>10.0</td>
<td>17.7</td>
</tr>
<tr>
<td>250</td>
<td>8</td>
<td>12.8</td>
<td>15</td>
<td>11.5</td>
<td>23.6</td>
<td>6.7</td>
<td>16.9</td>
</tr>
<tr>
<td>290</td>
<td>8</td>
<td>11.6</td>
<td>14</td>
<td>11.5</td>
<td>25.8</td>
<td>8.9</td>
<td>16.9</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
<td>14.0</td>
<td>16</td>
<td>15.2</td>
<td>38.1</td>
<td>12.5</td>
<td>25.6</td>
</tr>
<tr>
<td>325</td>
<td>6</td>
<td>14.9</td>
<td>17</td>
<td>15.2</td>
<td>36.6</td>
<td>11.0</td>
<td>25.6</td>
</tr>
<tr>
<td>360</td>
<td>8</td>
<td>12.8</td>
<td>15</td>
<td>11.6</td>
<td>28.7</td>
<td>9.2</td>
<td>19.6</td>
</tr>
<tr>
<td>450</td>
<td>10</td>
<td>17.5</td>
<td>19</td>
<td>15.7</td>
<td>40.6</td>
<td>13.6</td>
<td>27.0</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>14.2</td>
<td>16</td>
<td>16.1</td>
<td>36.6</td>
<td>13.8</td>
<td>22.8</td>
</tr>
<tr>
<td>650</td>
<td>12</td>
<td>20.6</td>
<td>23</td>
<td>19.1</td>
<td>50.0</td>
<td>16.5</td>
<td>33.5</td>
</tr>
<tr>
<td>850</td>
<td>14</td>
<td>18.7</td>
<td>21</td>
<td>19.7</td>
<td>48.2</td>
<td>18.6</td>
<td>29.5</td>
</tr>
</tbody>
</table>

Vertical Submersible Pumps (VS)
Range Chart - 60 Hz - 1 Stage

[Graph showing H vs Q]
Vertical Submersible Pumps (VS)
3600 rpm

Curve #: 11001-110214-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS)
3600 rpm

Pump Performance Curves 60 Hz

VS 110
Curve #: 11003-071121-S1

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Notes:

Vertical Submersible Pumps (VS)
Curve #: 11004-081121-S1
3600 rpm
Vertical Submersible Pumps (VS)
3600 rpm

Curve #: 11005-080704-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9006 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O T°=18^\circ C$, H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
VS 290
Curve #: 11010-081103-S1

Vertical Submersible Pumps (VS)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS)
1800 rpm

Curve #: 11011-070713-F1

Pump Performance Curves 60 Hz

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O $T^\circ = 18$ [°C], H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS) 3600 rpm

VS 360
Curve #: 11013-080614-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2

2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])

3. Power and efficiency losses are not reflected on the curve

4. Elevated temperature effects on performance are not included

5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)

6. Consider 2.0% efficiency derate if using balanced impellers

7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

VS 500
Curve #: 11015-080802-E2
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Vertical Submersible Pumps (VS)
1800 rpm

Curve #: 11021-070713-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O °T=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Multistage Pumps (HR)
Multistage Pumps (HR)

Versatile modular design concept for ease in components interchangeability. Pumps are suitable for pumping clean or slightly polluted liquids. Equipment characterized by its application in operation with high flows and where high pressures and excellent air tightness are required.

OPERATING PARAMETERS

- Capacities up to 6,500 gpm (1,400 m³/h)
- Head up to 1,320 Feet (400 m)
- Power through 1000 hp (750 kW)
- Pressures up to 590 psi (4,067 kPa)
- Frequency 50/60 Hz
- Temperatures to 300 °F (150°C)
- Discharge sizes from 3” to 12”

DESIGN FEATURES

- NEPTUNO PUMPS® high-efficiency design
- High-quality investment cast impellers and stage diffusers
- Modular design concept for maximum interchangeability
- Maximum versatility and reliability
- Both ends bearings and axial thrust balancing
- Special material selection for standard or abrasive/corrosive service
- Different suction and discharge flange orientation
- Packing or mechanical seal

SERVICES

- Primary Water Supply – Fresh water or Sea water
- Mining Processes - Cooling Water, Thickener Overflow, Reclaim Water, MiSeepage, Well Pumps-Process, Water Supply, MiDe-Watering, Electrolyte, Pressure Boosting and Transfer
- Solvent Extraction/Electro-Winning (SX/EW) - Raffinate, Pregnate Leach Solution (PLS), Heap Leach, Dump Leach, Acid Water Pressure Boosting and Transfer
- Tailings – Post Processed Solutions
- Oil & Gas Production – Onshore, Offshore and Pipeline
- Marine
- Pulp and Paper
Multistage Pumps (HR)
Applications

<table>
<thead>
<tr>
<th>Duty</th>
<th>Heavy</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Head</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Fluid</td>
<td>Clean</td>
<td>Process</td>
<td>Slurry</td>
</tr>
<tr>
<td>Flexibility</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

Multistage Pumps (HR)
Main Components & Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Cast Iron</th>
<th>Carbon Steel</th>
<th>Brass</th>
<th>Stainless Steel</th>
<th>Duplex</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volute</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear Rings</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Stuffing Box / Mechanical Seal</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multistage Pumps (HR)
Available Models

<table>
<thead>
<tr>
<th>HR 32</th>
<th>HR 50</th>
<th>HR 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR 150</td>
<td>HR 360</td>
<td>HR 900</td>
</tr>
</tbody>
</table>

Multistage Pumps (HR)
Range Chart - 60 Hz - 1 Stage

Q [gpm] vs H [ft]

Q [m³/h] vs H [m]
Multistage Pumps (HR)

Diagram

![Multistage Pump Diagram]

Multistage Pumps (HR)

Main Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>S2 Radial Suction</th>
<th>S1 Discharge</th>
<th>X</th>
<th>D</th>
<th>A</th>
<th>W1</th>
<th>W2</th>
<th>M 3-Stage</th>
<th>Each Add'l Stage M</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR 32</td>
<td>4</td>
<td>3</td>
<td>8.3</td>
<td>5.6</td>
<td>11.2</td>
<td>12.4</td>
<td>8.8</td>
<td>10.2</td>
<td>2.8</td>
</tr>
<tr>
<td>HR 50</td>
<td>3</td>
<td>2</td>
<td>7.9</td>
<td>6.3</td>
<td>12.0</td>
<td>11.7</td>
<td>8.9</td>
<td>8.9</td>
<td>2.6</td>
</tr>
<tr>
<td>HR 70</td>
<td>4</td>
<td>3</td>
<td>8.6</td>
<td>7.9</td>
<td>10.4</td>
<td>12.4</td>
<td>9.3</td>
<td>10.8</td>
<td>3.0</td>
</tr>
<tr>
<td>HR 150</td>
<td>4</td>
<td>3</td>
<td>11.7</td>
<td>12.6</td>
<td>21.2</td>
<td>21.0</td>
<td>18.1</td>
<td>14.5</td>
<td>7.1</td>
</tr>
<tr>
<td>HR 360</td>
<td>8</td>
<td>6</td>
<td>15.7</td>
<td>14.0</td>
<td>22.5</td>
<td>22.2</td>
<td>17.3</td>
<td>23.0</td>
<td>6.1</td>
</tr>
<tr>
<td>HR 900</td>
<td>12</td>
<td>10</td>
<td>21.7</td>
<td>17.7</td>
<td>30.8</td>
<td>32.3</td>
<td>25.7</td>
<td>33.5</td>
<td>8.5</td>
</tr>
</tbody>
</table>
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
HR 70
Curve #: 22003-070619-S1
Multistage Pumps (HR)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18[°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O T=18 [^oC]$, H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
HR 360
Multistage Pumps (HR)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Multistage Pumps (HR)
1200 rpm

HR 900
Curve #: 22006-120214-S2

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
HR 900
Curve #: 22006-120214-S2
Multistage Pumps (HR)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O^T=18^\circ C$, H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Axial Split Case Pumps (HA)
Axial Split Case Pumps (HA)

The range axial split pump available pumps include both single double-suction and multi-stage designs. Our pumps are designed for high volume, high pressure heavy-duty liquid transport applications.

OPERATING PARAMETERS

• Capacities up to 17,000 gpm (3,200 m³/h)
• Head up to 2,700 Feet (800 m)
• Power through 1000 hp (750 kW)
• Pressures up to 1,180 psi (8,148 kPa)
• Frequency 50/60 Hz
• Temperatures to 300 °F (150°C)
• Discharge sizes from 3” to 14”

DESIGN FEATURES

• NEPTUNO PUMPS® high-efficiency design
• High-quality investment cast impellers and stage diffusers
• Axially split casing for ease of maintenance
• Heavy duty single row bolting
• Opposed impeller arrangement for thrust balancing
• Special material selection for standard or abrasive/corrosive service
• Different suction and discharge flange orientation
• Mechanical sealing

SERVICES

• Primary Water Supply – Fresh water or Sea water
• Mining Processes - Cooling Water, Thickener Overflow, Reclaim Water, MISeepage, Well Pumps-Process, Water Supply, MiDe-Watering, Electrolyte, Pressure Boosting and Transfer
• Solvent Extraction/Electro-Winning (SX/EW): Raffinate, Pregmate Leach Solution (PLS), Heap Leach, Dump Leach, Acid Water Pressure Boosting and Transfer
• Tailings – Post Processed Solutions
• Oil & Gas Production – Onshore, Offshore and Pipeline
• Marine
• Pulp and Paper
Axial Split Case (HA)

Applications

<table>
<thead>
<tr>
<th>Duty</th>
<th>Heavy</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Head</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Fluid</td>
<td>Clean</td>
<td>Process</td>
<td>Slurry</td>
</tr>
<tr>
<td>Flexibility</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

Axial Split Case (HA)

Main Components & Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Cast Iron</th>
<th>Carbon Steel</th>
<th>Brass</th>
<th>Stainless Steel</th>
<th>Duplex</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volute</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Impeller</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Wear Rings</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Shaft</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Axial Split Case (HA)
Available Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Model</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 90</td>
<td>HA 140</td>
<td>HA 200</td>
</tr>
<tr>
<td>HA 250</td>
<td>HA 290</td>
<td>HA 475</td>
</tr>
<tr>
<td>HA 700</td>
<td>HA 2400</td>
<td></td>
</tr>
</tbody>
</table>

Axial Split Case (HA)
Range Chart - 60Hz

\[Q \text{ [m}^3/\text{h}] \]

\[H \text{ [m]} \]

\[Q \text{ [gpm]} \]

\[H \text{ [ft]} \]
Axial Split Case (HA)

Diagram

Axial Split Case (HA)
Main Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>S1 Suction</th>
<th>S2 Discharge</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 90</td>
<td>5.0</td>
<td>3.0</td>
<td>20.0</td>
<td>5.5</td>
<td>21.7</td>
<td>11.0</td>
<td>6.4</td>
<td>2</td>
</tr>
<tr>
<td>HA 140</td>
<td>5.0</td>
<td>3.0</td>
<td>23.6</td>
<td>5.5</td>
<td>19.0</td>
<td>12.4</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>HA 200</td>
<td>6.0</td>
<td>4.0</td>
<td>26.0</td>
<td>6.7</td>
<td>21.7</td>
<td>14.0</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>HA 250</td>
<td>6.0</td>
<td>4.0</td>
<td>26.0</td>
<td>6.7</td>
<td>21.7</td>
<td>14.0</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>HA 290</td>
<td>6.0</td>
<td>4.0</td>
<td>26.0</td>
<td>6.7</td>
<td>21.7</td>
<td>14.0</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>HA 475</td>
<td>11.0</td>
<td>6.0</td>
<td>41.9</td>
<td>9.6</td>
<td>39.1</td>
<td>19.7</td>
<td>9.6</td>
<td>5</td>
</tr>
<tr>
<td>HA 700</td>
<td>8.0</td>
<td>8.0</td>
<td>40.6</td>
<td>11.1</td>
<td>35.4</td>
<td>18.6</td>
<td>8.3</td>
<td>3</td>
</tr>
<tr>
<td>HA 2400</td>
<td>20.0</td>
<td>14.0</td>
<td>45.7</td>
<td>18.3</td>
<td>51.8</td>
<td>32.1</td>
<td>18.3</td>
<td>1</td>
</tr>
</tbody>
</table>
Axial Split Case (HA)
3600 rpm

HA 90
Curve #: 31001-070619-F1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
HA 140
Curve #: 31002-090923-S1
Axial Split Case (HA)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
Axial Split Case (HA)
3600 rpm

HA 140
Curve #: 31002-090923-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
HA 200
Curve #: 31003-080724-E1

Axial Split Case (HA)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
Axial Split Case (HA)
3600 rpm

HA 200
Curve #: 31003-080724-E1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O $T=18^\circ C$, H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.

Notes:

HA 250
Curve #: 31004-080704-F1
1800 rpm
Axial Split Case (HA)
3600 rpm

HA 250
Curve #: 31004-080704-F1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O^T=18^\circ C$, H_2O Density $= 998$ [kg/m3])
3. Power and efficiency losses are not reflected on the curve

Notes:
1. Elevated temperature effects on performance are not included
2. Consider 3.0% efficiency derate if operated Off-BEPT (60% - 80%)
3. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water ($H_2O \ T°=18°C$, H_2O Density = 998 [kg/m3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.

Axial Split Case (HA)
3600 rpm

HA 290
Curve #: 31005-080614-F1
HA 475
Curve #: 32001-100625-S2

Axial Split Case (HA)
1800 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
Axial Split Case (HA)
3600 rpm

HA 475
Curve #: 32001-100625-S2

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2

Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])

Power and efficiency losses are not reflected on the curve

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (\(H_2O\) \(T=18\) [°C], \(H_2O\) Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
Axial Split Case (HA)
1200 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (\(H_2O \) \(T=18 \) [°C], \(H_2O \) Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Specifications are subject to change without previous notice.
Volute Pumps (HV)

NEPTUNO PUMPS® offers a wide range Volute Pumps to satisfy a variety of head requirements and capacities, with different suction and discharge flange sizes.

OPERATING PARAMETERS

• Capacities up to 19,500 gpm (3,700 m³/h)
• Head up to 820 Feet (250 m)
• Power through 700 hp (520 kW)
• Pressures up to 370 psi (2,550 kPa)
• Frequency 50/60 Hz
• Temperatures to 300 °F (150°C)
• Discharge sizes from 3” to 12”

DESIGN FEATURES

• NEPTUNO PUMPS® high-efficiency design
• High-quality investment cast impellers and stage diffusers
• ANSI Design available
• Special material selection for standard or abrasive/corrosive service
• Maximum versatility and reliability
• Different suction and discharge flange sizes
• Packing or mechanical seal

SERVICES

• Primary Water Supply – Fresh water or Sea water
• Mining Processes: Cooling Water, Thickener Overflow, Reclaim Water, MiSeepage, Well Pumps-Process, Water Supply, MiDe-Watering, Electrolyte, Pressure Boosting and Transfer
• Solvent Extraction/Electro-Winning (SX/EW): Raffinate, Pregnate Leach Solution (PLS), Heap Leach, Dump Leach, Acid Water Pressure Boosting and Transfer
• Tailings – Post Processed Solutions
• Oil & Gas Production – Onshore, Offshore and Pipeline
• Marine
• Pulp and Paper
Volute Pumps (HV)

Applications

<table>
<thead>
<tr>
<th>Duty</th>
<th>Heavy</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Head</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Fluid</td>
<td>Clean</td>
<td>Process</td>
<td>Slurry</td>
</tr>
<tr>
<td>Flexibility</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

Volute Pumps (HV)

Main Components & Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Cast Iron</th>
<th>Carbon Steel</th>
<th>Brass</th>
<th>Stainless Steel</th>
<th>Duplex</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volute</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Impeller</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Shaft</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Stuffing Box</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Volute Pumps (HV)
Available Models

<table>
<thead>
<tr>
<th>HV 62</th>
<th>HV 105</th>
<th>HV 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV 175</td>
<td>HV 250</td>
<td>HV 450</td>
</tr>
<tr>
<td>HV 475</td>
<td>HV 500</td>
<td>HV 3000</td>
</tr>
</tbody>
</table>

Volute Pumps (HV)
Range Chart - 60 Hz
Volute Pumps (HV)

Diagram

Volute Pumps (HV)
Main Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Suction</th>
<th>Discharge</th>
<th>CP</th>
<th>D</th>
<th>F</th>
<th>O</th>
<th>U</th>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV 62</td>
<td>3</td>
<td>2</td>
<td>23.5</td>
<td>10</td>
<td>12.5</td>
<td>21.5</td>
<td>1.1</td>
<td>11.5</td>
<td>4</td>
<td>16.8</td>
</tr>
<tr>
<td>HV 105</td>
<td>4</td>
<td>3</td>
<td>23.5</td>
<td>8.3</td>
<td>12.5</td>
<td>19.3</td>
<td>1.1</td>
<td>8.2</td>
<td>4</td>
<td>12.4</td>
</tr>
<tr>
<td>HV 120</td>
<td>4</td>
<td>3</td>
<td>23.5</td>
<td>8.3</td>
<td>12.5</td>
<td>19.3</td>
<td>1.1</td>
<td>8.2</td>
<td>4</td>
<td>7.6</td>
</tr>
<tr>
<td>HV 175</td>
<td>4</td>
<td>3</td>
<td>23.5</td>
<td>8.3</td>
<td>12.5</td>
<td>19.3</td>
<td>1.1</td>
<td>8.2</td>
<td>4</td>
<td>13.6</td>
</tr>
<tr>
<td>HV 250</td>
<td>8</td>
<td>6</td>
<td>33.9</td>
<td>14.5</td>
<td>18.7</td>
<td>30.5</td>
<td>2.4</td>
<td>16</td>
<td>6</td>
<td>20.5</td>
</tr>
<tr>
<td>HV 450</td>
<td>8</td>
<td>6</td>
<td>33.9</td>
<td>14.5</td>
<td>18.7</td>
<td>32.5</td>
<td>2.4</td>
<td>18</td>
<td>6</td>
<td>23.3</td>
</tr>
<tr>
<td>HV 475</td>
<td>8</td>
<td>6</td>
<td>40.1</td>
<td>15</td>
<td>19.5</td>
<td>36.9</td>
<td>2.4</td>
<td>21.9</td>
<td>8</td>
<td>24.4</td>
</tr>
<tr>
<td>HV 500</td>
<td>8</td>
<td>6</td>
<td>39.5</td>
<td>16.9</td>
<td>22.6</td>
<td>30.1</td>
<td>2.2</td>
<td>13.2</td>
<td>9.3</td>
<td>28</td>
</tr>
<tr>
<td>HV 3000</td>
<td>18</td>
<td>18</td>
<td>50</td>
<td>28</td>
<td>24.8</td>
<td>62</td>
<td>3.4</td>
<td>34</td>
<td>16.7</td>
<td>50</td>
</tr>
</tbody>
</table>
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
HV 62
Curve #: 43001-070620-F1
Volute Pumps (HV)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Volute Pumps (HV)
1800 rpm

HV 105
Curve #: 43002-070619-F1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°[°C], H₂O Density = 998[kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.

Notes:

Performance Curves 60 Hz

<table>
<thead>
<tr>
<th>Q [gpm]</th>
<th>H [m]</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>80</td>
<td>45</td>
<td>77</td>
</tr>
<tr>
<td>160</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>240</td>
<td>15</td>
<td>71</td>
</tr>
<tr>
<td>320</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>480</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>560</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>640</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>720</td>
<td>0</td>
<td>77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q [m³/h]</th>
<th>NPSHr [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>120</td>
<td>36</td>
</tr>
<tr>
<td>140</td>
<td>42</td>
</tr>
<tr>
<td>160</td>
<td>48</td>
</tr>
<tr>
<td>180</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P [hp]</th>
<th>P [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3.75</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
</tr>
<tr>
<td>15</td>
<td>11.25</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>18.75</td>
</tr>
<tr>
<td>30</td>
<td>22.5</td>
</tr>
<tr>
<td>35</td>
<td>26.25</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

Volute Pumps (HV)

<table>
<thead>
<tr>
<th>Q [m³/h]</th>
<th>NPSHr [ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>54</td>
</tr>
</tbody>
</table>

HV 105

Curve #: 43002-070619-F1

3600 rpm
Volute Pumps (HV)
1800 rpm

HV 120
Curve #: 43003-090209-S1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H_2O T°=18 [°C], H_2O Density = 998 [kg/m^3])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
HV 120
Curve #: 43003-090209-S1

Volute Pumps (HV)
3600 rpm

Notes:

1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18 °C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Volute Pumps (HV)
1800 rpm

HV 175
Curve #: 43004-070619-F1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
HV 175
Curve #: 43004-070619-F1

Volute Pumps (HV)
3600 rpm

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water \((H_2O T=18 \degree C), (H_2O \text{ Density} = 998 \text{ [kg/m}^3]\))
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C; H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T=18°C, H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Volute Pumps (HV)
1200 rpm

HV 3000
Curve #: 41002-070717-F1

Notes:
1. Operating data certified to ISO 9906 Hydraulic performance acceptance tests - Grades 1 & 2
2. Performance based on single stage pumping clean non-aerated water (H₂O T°=18 [°C], H₂O Density = 998 [kg/m³])
3. Power and efficiency losses are not reflected on the curve
4. Elevated temperature effects on performance are not included
5. Consider 3.0% efficiency derate if operated Off-BEP (60% - 80%)
6. Consider 2.0% efficiency derate if using balanced impellers
7. Specifications are subject to change without previous notice.
Hacia una economía circular comprometida con el medio ambiente.

Neptuno3R™ - Reutiliza, Reduce y Recicla: Debido a la actual escasez y alto valor de las materias primas, creemos en la necesidad de transitar hacia una economía circular que reutilice los materiales y que permita mitigar los efectos del cambio climático. Nos sentimos orgullosos de ser una empresa de diseño y manufactura que reutiliza y recicla desechos industriales metálicos para producir nuevos productos de alta eficiencia energética, contribuyendo al aprovechamiento máximo de los recursos y disminuyendo los efectos del calentamiento global. Para saber más sobre nuestras capacidades visite: www.neptunopumps.com/3R

Neptuno®, Neptuno Pumps®, Innovation that flows™, VTPSelector™, Neptuno Barge Pump System™ and any and all Neptuno Pumps Ltda. brand, product, service and feature names, logos and slogans are trademarks or registered trademarks of Neptuno Pumps Ltda. All other brand, product, service and feature names or trademarks are the property of their respective owners. This brochure is for general presentation only. All performances and/or applications shown are only for general information and may not be applied for every case. For actual pump performance and information please contact us. This brochure does not provide any warranty or guarantee of any kind. Directions for use and safety will be given separately with any purchase. We are constantly improving the performance of our equipment and therefore reserve the right to make alterations to the information without previous notice. This publication is the property of Neptuno Pumps Ltda. Reproduction of all or any portion of this material is prohibited by law.